

Moving together

5. > General characteristics
6. > Technical standards
7. > Range of products
8. > Railway applications
10. > Instantaneous relays
12. > Time-Lag relays
14. > Latching relays
16. > Contactors
18. > Impulse relay
19. > Breaking capacity
24. >Pick-up voltage/release voltage-temperature charts
27. > Model selection
29. > Dimensions and panel mounting cut-off

ANSWERS FOR RAILWAY APPLICATIONS

ARTECHE auxiliary relays guarantee the best features and complete security even in the hardest working environment.

The FF range has been designed to fulfil the most demanding requirements in the railway industry in regards to low duty loads, fire and smoke, etc.

Their design, durability and quality make them suitable for high responsibility controls in the railway sector, highlighting:

ROLLING STOCK:

> Boarding doors locking.

> Security loop.
> Pantograph control.
> Lighting and air conditioned systems operation.
> Traction system.
> Brake systems.

INTERLOCKING AND SIGNALLING:

Interface between infrastructure and rolling stock:

[^0]
GENERAL CHARACTERISTICS

The main features of ARTECHE's auxiliary relays are the following:
> Security contacts, WELD NO TRANSFER (EN 50205 Standard).
> NO WELD contacts (NF F 70-031 Standard).
> Capable to withstand vibrations and seismic conditions (EN 61373 Standard).
) Capable to operate under low duty loads, activate digital inputs, and operate without any load.
> Security applications: they can be used in applications up to SIL 4.
> Wide range of auxiliary voltage levels (Vdc and Vac).
> Sturdy design.
> Self-cleaning contacts.
> Designed to allow continuous operation even in high ambient temperature, within the whole voltage range.
> High level of electrical insulation between input and output circuits.
> High degree of protection (IP40), with transparent cover, making them suitable for use in salty and tropical atmospheres.
> Capable to work under ambients with relative humidity around 100\%.
) Simplicity of installation (plug-in relays in a wide range of sockets with different installation configurations).
> No need of maintenance after installation.

In addition, the different number of alternatives that are offered when the equipment is selected, both technically (increase of the breaking capacity by serial contacts, possibility of adding different options to the relay) and in the assembly method (front, rear or flush mounted sockets, with screws or fastons) must be considered.

TECHNICAL STANDARDS

RAILWAY APPLICABLE STANDARDS

> EN 60077 Series. Rolling stock equipment.

- Part 1: General conditions in service and general terms.
- Part 2: Electrotechnical components.
> EN 50155 (IEC 60571 equivalent). Railway applications - Electronic equipment used on rolling stock.
IEC 61373. Railway applications - Shock and vibration tests.
NF F 16-101 y NF F 16-102. Rolling stock fire behaviour.
EN 45545-2. Railway applications - Fire behavior of materials and components.
> RIA 12. General specification for protection of traction and rolling stock electronic equipment from transients and surges in DC control systems.
EN 50121-3-2:2006. Electromagnetic compatibility.
EN 50205. Relays with forcibly mechanically guided contacts. WELD NO TRANSFER

NF F 70-031. Contact weld resistance tests. NO WELD CONTACTS
UIC 736R:2004. Signalling relays.

GENERAL STANDARDS

In addition to the specific applicable standards, ARTECHE auxiliary relays are designed based on the fulfilment of the following standards:

IEC 61810: Electromechanical all-or-nothing relays.
IEC 60255: Electrical relays. Measuring relays and protection equipment.

IEC 61812: Specified time relays for industrial use.
IEC 60947: Low-voltage switchgear and controlgear. IEC 61000: Electromagnetic compatibility

E322124

UL Recognized Component Marks for USA and Canada: The combined UL signs for the USA and Canada are recognized by the authorities of both countries. All auxiliary relays identified with this mark meet the requirements of both countries.

RANGE OF PRODUCTS

INSTANTANEOUS RELAYS

Thanks to an exhaustive control process, the FF range can assure a correct performance of the contacts with low duty loads or even with no load.

These instantaneous relays can be manufactured with different options: front led, mechanical indication of the contacts position, trip flag and push to test button (see model selection table in page 27).

Instantaneous relays

ARTECHE's auxiliary relays are designed to work properly under frequent vibration and shock applications, as in the case of railway sector.

They comply with the extended voltage range ($+25 /-30 \%$).
The sturdy design of our equipment, with a higher appropriate pressure between contacts, allows them to withstand vibrations without penalizing the good performance of the relays.

Instantaneous relays with coil overvoltage protection

In applications with overvoltage, where drop-out time is not important, it is recommended to use a diode. Otherwise, a varistor is more suitable.

These elements are aimed to discharge the energy of the coil when the relay is no longer energized.

These relays are suitable when the customer wishes to protect the contact of the equipment which commands the operation of our relay, providing a longer durability of the whole protection and control system.

TIMERS

Relays in which the operation of the contacts is subject to a timing set in the relay. This timing can be on pick up, drop out, cyclic ...with high accuracy and a wide range, from milliseconds to several hours, all of them available in the same relay.

When timing is on drop out or cyclic, an auxiliary supply is needed.
There is the possibility of having different voltages for supply and command of the timing, by choosing the option "independent command" (see model selection table in page 29).

LATCHING RELAYS

ARTECHE latching relays have two stable positions for the output contacts. Depending on which coil is fed, contacts will change from one position to the other. The ARTECHE latching relays only have consumption during the change from one position to the other, having therefore no consumption in permanence.

CONTACTORS

Their design is based on the instantaneous relays, but incorporating magnetic blow-out and ceramic shielding to protect the plastic materials from the electric arc created when opening high loads. This configuration allows them to open up to 15 Amps in $125 \mathrm{Vdc}, 40 \mathrm{~ms}$ inductive circuits.

IMPULSE RELAYS

Similar to latching relay with a single input. Each impulse in the input makes the contact position change. An auxiliary supply is needed.

RAILWAY APPLICATIONS

MODEL	ROLLING STOCK	SIGNALING	CONTACTS	WELD NO TRANSFER SECURITY CONTACTS	NO WELD CONTACTS
Instantaneous					
RD-2SY	-	-	2 CO	-	-
RF-4SY	-	-	4 CO	-	-
RJ-8SY	-	-	8 CO	-	-
RD-2SYDI / RD-2SYV	-	-	2 CO	-	-
RF-4SYDI / RF-4SYV	-	-	4 CO	-	-
RJ-8SYDI / RJ-8SYV	-	-	8 CO	-	-
Timers					
TDF-2	-	-	2 CO	-	-
TDF-4	-	-	4 CO	-	-
TDF-22	-	-	$\begin{gathered} 4 \text { CO } \\ (2 \text { inst. }+2 \text { timed. }) \end{gathered}$	-	-
TDJ-8	-	-	8 CO	-	-
TDJ-44	-	-	$\begin{gathered} 8 \text { CO } \\ \text { (4 inst. }+4 \text { timed.) } \end{gathered}$	-	-
TDF-4DO	-	-	4 CO	-	-
Latching					
BF-3	-	-	3 CO		
BF-4	-	-	4 CO		
BJ-8	-	-	8 CO		
BF-3BB	-	-	3 CO		
BF-4BB	-	-	4 CO		
BJ-8BB	-	-	8 CO		
Contactors					
CD-2	-	-	2 CO (2NO Contactor + 2NC Relay)		-
CF-4	-	-	4 CO (4NO Contactor + 4NC Relay)		-
CJ-8	-	-	8 CO (8NO Contactor + 8NC Relay)		-
CD-2DI	-	-	2 CO (2NO Contactor + 2NC Relay)		-
CF-4DI	-	-	4 CO (4NO Contactor + 4NC Relay)		-
CJ-8DI	-	-	8 CO (8NO Contactor + 8NC Relay)		-
Impulse relay					
RBF-2	-	-	2 CO	-	\bullet
RBF-4	-	-	4CO	-	-

TECHNICAL FEATURES PER MODEL

World-class range of auxiliary relays for
energy sector, specially
designed for the most demanding applications

INSTANTANEOUS RELAYS

Model

(1) Other voltages upon request $_{\text {(2) }}$ G $\quad{ }^{\text {(3) }}$ Ask for higher altitudes $\quad{ }^{\text {(5) }}$ At the end of working life
${ }^{(2)}$ Guarantee data for relays just manufactured ${ }^{(4)}$ Voltage not recognized by UL
${ }^{7} \mathrm{~N}_{\text {us }}$

INSTANTANEOUS RELAYS WITH COIL OVERVOLTAGE PROTECTION
Model

RD-2SYDI \cdot RD-2SYV	RF-4SYDI \cdot RF-4SYV	RJ-8SYDI \cdot RJ-8SYV

Frequent Vibration and Shock applications, as railway sector.
Applications
Construction characteristics
Intended to protect the contact of the equipment that feeds the coil in our relay.

Options
Weight (g)

Dimensions (mm)

$$
\frac{\text { With OP options }}{\frac{125}{(A) 22,5 \times(B) 50,4 \times(\text { C) } 72}}
$$

$\overline{\text { (A) } 22,5 \times(B) 50,4 \times(C) 72}$ (A) $42,5 \times$ (B) $50,4 \times(C) 72$ (A) $82,5 \times$ (B) $50,4 \times$ (C) 72
4 Changeover
8 Changeover

TIME-LAG RELAYS (I)

Model

Model
Applications
Construction characteristics
$\left.\frac{\text { Instantaneous contact no. }}{} \begin{array}{l}\text { Connections Contacts no. } \\ \hline \text { Options (With OP options) } \\ \hline \text { Dimensions (mm) }\end{array}\right]$

Electrical Command Timing

8 Changeover	4 Changeover
o Changeover	4 Changeover
DEPENDENT CONTROL INDEPENDENT CONTROL	DEPENDENT CONTROL INDEPENDENT CONTROL

Selectable drop out timing with one single input
single in
 4 Changeover o Changeover

Coil characteristics
Standard voltages ${ }^{(1)}$
Voltage range
Pick-up / release voltage
Average consumption in permanence $\left(U_{N}\right)$
Operating time
Time range

Pick-up time	$<23 \mathrm{~ms}$	$<23 \mathrm{~ms}$
Drop-out time	$<50 \mathrm{~ms}$	
Maximun pick up time	$\begin{array}{r} 1000 \\ \text { ten } \end{array}$	s. for the entire range of voltages and eratures or any combination thereof
Contacts		
Contact type	8 Changeover	4 Changeover
Contact material	AgNi	
Contacts resistance ${ }^{(2)}$	$\leq 15 \mathrm{~m} \Omega$	
Max. contacts resistance ${ }^{(5)}$	$40 \mathrm{~m} \Omega$ a 10 A	
Distance between contacts	1,2 mm	
Permanent current	10 A	
Instantaneous current	30 A during 1s / 80 A during $200 \mathrm{~ms} / 200 \mathrm{~A}$ during 10 ms	
Wetting current/voltage	$12 \mathrm{Vdc}, 10 \mathrm{~mA}$	
Max. making capacity	$40 \mathrm{~A}, 0,5 \mathrm{~s}, 110 \mathrm{Vdc} / 30 \mathrm{~A}, 1 \mathrm{~s}, 36 \mathrm{Vdc}, 30.000$ operations ($1 \mathrm{op} / 15 \mathrm{~s}$)	
Breaking capacity	See breaking capacity curves (Contact configuration type B)	
Max. breaking capacity	See value for 50,000 operations	
$U_{\text {max }}$ opened contact	250 Vdc / 400 Vac	
General data		
Mechanical endurance	10^{7} operations	
Dielectric strength	2 kV (between independent circuits) / 1,5 kV (between open contacts)	$2,2 \mathrm{kV}$ (between independent circuits) / $1,5 \mathrm{kV}$ (between open contacts)
Impulse voltage	5 kV (between independent circuits) / 2,5 kV (betw	en open contacts)
Insulation resistance	$>1000 \mathrm{G} \Omega$	
Operating temperature	Hasta $125 \mathrm{Vdc}-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C} / 220 \mathrm{Vdc}-250 \mathrm{Vdc}-40^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$	
Storage temperature	$-50 \div \mathrm{C}+85 \bigcirc \mathrm{C}$	
Max. operating humidity	$93 \% /+40^{\circ} \mathrm{C}$	
Operating altitude ${ }^{(2)}$	<2000 m	

[^1]
GENERAL PURPOSE LATCHING RELAYS

${ }^{(1)}$ Other voltages upon request	(3) Guarantee data for relays just manufactured

[^2]
LATCHING RELAYS WITH COIL OVERVOLTAGE PROTECTION

Applications
Intended to protect the contact of the equipment that feeds the coil in our relay
Construction characteristics
Contacts no.

3 Changeover
4 Changeover
8 Changeover
Options

Pick-up time		$<20 \mathrm{~ms}$
Contacts		AgNi
Contact material		$\leq 15 \mathrm{~m} \Omega$
Contacts resistance ${ }^{(4)}$		$40 \mathrm{~m} \Omega$ at 10 A
Max. contacts resistance ${ }^{(5)}$	$1,8 \mathrm{~mm}$	
Distance between contacts		10 A
Permanent current		

Instantaneous current	80 A during $200 \mathrm{~ms} / 200$ A during 10 ms
Wetting current/voltage	$12 \mathrm{Vdc}, 10 \mathrm{~mA}$
Max. making capacity	$40 \mathrm{~A}, 0,5 \mathrm{~s}, 110 \mathrm{Vdc} / 30 \mathrm{~A}, 1 \mathrm{~s}, 36 \mathrm{Vdc}, 30.000$ operations ($1 \mathrm{op} / 15 \mathrm{~s}$)
Breaking capacity	See breaking capacity curves (Contact configuration type A)
Max. breaking capacity	See value for 50,000 operations
$\mathrm{U}_{\text {max }}$ opened contact	$250 \mathrm{Vdc} / 400 \mathrm{Vac}$
General data	

Mechanical endurance	10^{7} operations
Dielectric strength	2 kV between independent circuits and between open contacts
Impulse voltage	5 kV between independent circuits and between open contacts
Insulation resistance	>1000 G Ω
Operating temperature	$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$
Max. operating humidity	93\% / +40 ${ }^{\circ} \mathrm{C}$
Operating altitude ${ }^{(2)}$	<2000 m

(1) $)$ Other voltages upon request (2) Ask for higher altitudes	(3) Vac voltages upon request (4) Guarantee data for relays just manufactured	${ }^{(5)}$ At the end of working life

CONTACTORS (I)

Model	CD-2	CF-4	CJ-8
Applications	Opening inductive load in DC circuits. NO contacts are heavy duty contacts, and NC contacts are standard contacts.		
Construction characteristics			
Contacts no.	2 Changeover polarized	4 Changeover polarized	8 Changeover polarized

Breaking capacity See breaking capacity curves (Contactor curve for the NO contacts, standard instantaneous

Max. breaking capacity	125 VDC - 40ms: Contacts NA 6 Amp. 10^{5} operations - 15 Amp. 100 operations; Contacts NC 0,52 Amp. 50000 operations
$U_{\text {max }}$ opened contact	$250 \mathrm{Vdc} / 400 \mathrm{Vac}$
General data	
Mechanical endurance	10^{7} operations
Dielectric strength	2 kV (between independent circuits) $/ 1,5 \mathrm{kV}$ (between open contacts)
Impulse voltage	5 kV (between independent circuits) / 2,5 kV (between open contacts)
Insulation resistance	$>1000 \mathrm{G} \Omega$
Operating temperature	$-40{ }^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$
Max. operating humidity	$93 \% /+40^{\circ} \mathrm{C}$
Operating altitude ${ }^{(3)}$	<2000 m

(1) Other voltages upon request $\quad{ }^{(3)}$ Ask for higher altitudes $\quad{ }^{(4)}$ At the end of working life
${ }^{(2)}$ Guarantee data for relays just manufactured

CONTACTORS (II)

Model	CD-2DI	CF-4DI	CJ-8DI
Applications	Contactors with coil overvoltage protection		
Construction characteristics			
Contacts no.	2 Changeover polarized	4 Changeover polarized	8 Changeover polarized
Connections Options			
Weight (g)	129	254	505
Dimensions (mm)	(A) $22,5 \times$ (B) $50,4 \times(C) 72$ (D short type)	(A) $42,5 \times$ (B) $50,4 \times(C) 72$ (F short type)	(A) $82,5 \times$ (B) $50,4 \times(C) 72$ (J short type)
Coil characteristics			
Standard voltages ${ }^{(1)}$	24, 48, 72, 96, 110, 125, $220 \mathrm{Vdc} / 24,48,63,5,110,230 \mathrm{Vac}(50-60 \mathrm{~Hz}$)		
Voltage range	$+25 \%-30 \% U_{N}$		
Pick-up / release voltage	See pick-up/release voltage-temperature curves		
Average consumption in permanence (U_{N})	2,6 W	3,9 W	6 W
Operating time			
Pick-up time	$<20 \mathrm{~ms}$		
Drop-out time	$<50 \mathrm{~ms}$		
Contacts			
Contact material	AgNi		
Contacts resistance ${ }^{(2)}$	$\leq 15 \mathrm{~m} \Omega$		
Max. contacts resistance ${ }^{(4)}$	$40 \mathrm{~m} \Omega$ at 10 A		
Distance between contacts	1,2 mm		
Permanent current	10 A		
Instantaneous current	30 A during $1 \mathrm{~s} / 80$ A during $200 \mathrm{~ms} / 200$ A during 10 ms		
Wetting current/voltage	$12 \mathrm{Vdc}, 10 \mathrm{~mA}$		
Max. making capacity	$40 \mathrm{~A}, 0,5 \mathrm{~s}, 110 \mathrm{Vdc} / 30 \mathrm{~A}, 1 \mathrm{~s}, 36 \mathrm{Vdc}, 30.000$ operations ($1 \mathrm{op} / 15 \mathrm{~s}$)		
Breaking capacity	See breaking capacity curves (Contactor curve for the NO contacts, standard instantaneous relay curves for NC contacts)		
Max. breaking capacity	125 VDC - 40ms: Contacts NA 6 Amp. 10^{5} operations - 15 Amp. 100 operations; Contacts NC 0,52 Amp. 50000 operations		
$U_{\text {max }}$ opened contact	250 Vdc / 400 Vac		
General data			
Mechanical endurance	10^{7} operations		
Dielectric strength	2 kV (between independent circuits) / 1,5 kV (between open contacts)		
Impulse voltage	5 kV (between independent circuits) / $2,5 \mathrm{kV}$ (between open contacts)		
Insulation resistance	$>1000 \mathrm{G} \Omega$		
Operating temperature	$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$		
Storage temperature	$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$		
Max. operating humidity	93\% / + 40으		
Operating altitude ${ }^{(3)}$	<2000 m		

IMPULSE RELAY

BREAKING CAPACITY

BREAKING CAPACITY

The breaking capacity is a critical parameter on the design and the application of the relay. Its mechanical life could be considerably reduced, depending on the value of the load (especially with heavy duty loads), the number of operations and the environmental conditions in which the relay is operating.

In any configuration, ARTECHE's auxiliary relays have high breaking capacity values. These limits are shown in the table below, in terms of power and current values. In all cases, these relays guarantee the correct performance during 50,000 operations.

Likewise, the values shown in the following charts have been obtained in standard conditions in the laboratory, and they could be different in real conditions. In any case, the possibility of connecting serial contacts or a bigger distance between contacts makes these values to be considerably increased.

INSTANTANEOUS, LATCHING, TIMERS AND PULSE RELAYS

24 Vdc voltage
 Different load configurations

Resistive load:

> $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

Highly inductive load:
> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$.

- Distance between contacts $=1,8 \mathrm{~mm}$
\rightarrow Distance between contacts $=1,2 \mathrm{~mm}$

Vdc	Contact configuration	0 ms		20 ms		40 ms	
		$P(W)$	I(A)	$P(W)$	I(A)	$P(W)$	I(A)
24	Distance between contacts $=1,8 \mathrm{~mm}$	500	20,83	370	15,42	250	10,42
	Distance between contacts $=1,2 \mathrm{~mm}$	450	18,75	300	12,50	210	8,75

110 Vdc voltage

Different load configurations.

Resistive load:

> $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

Highly inductive load:
> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$.

- Distance between contacts $=1,8 \mathrm{~mm}$
\rightarrow Distance between contacts $=1,2 \mathrm{~mm}$
$\cdots 2$ contacts in series. Distance between contacts $=1,8 \mathrm{~mm}$
- 2 contacts in series. Distance between contacts $=1,2 \mathrm{~mm}$

		0 ms		20 ms		40 ms	
Vdc	Contact configuration	$P(W)$	I(A)	P(W)	I(A)	P(W)	I(A)
110	Distance between contacts $=1,8 \mathrm{~mm}$	170	1,55	140	1,27	90	0,82
	Distance between contacts $=1,2 \mathrm{~mm}$	125	1,14	100	0,91	65	0,59
	2 contacts in series. Distance between contacts = $1,8 \mathrm{~mm}$	1.360	12,36	1.106	10,05	730	6,63
	2 contacts in series. Distance between contacts = $1,2 \mathrm{~mm}$	874	7,95	742	6,74	482	4,38

CONTACTORS

110 Vdc

Voltage
> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$.

HOW TO SELECT THE CURVE OF MY RELAY

These charts show the breaking capacity values, either for resistive and highly inductive loads, in three voltage values of reference (ask for other voltage values). The charts show two different curves:
> Pink Curve: Breaking capacity of the relays with distance between contacts $=1.8 \mathrm{~mm}$.
> Blue Curve: Breaking capacity of the relays with distance between contacts $=1.2 \mathrm{~mm}$.

The distance between contacts is shown in the tables of technical data.

HOW THE BREAKING CAPACITY
 CAN BE INCREASED

Although ARTECHE auxiliary relays are power relays, designed to have a high breaking capacity, there are applications where the loads are so high that it is necessary to even increase the breaking capacity, keeping the reliability of the contacts of the auxiliary relays

Thus, ARTECHE relays offer the possibility of connecting 2 or more contacts in series giving an important increase of breaking capacity, guaranteeing the right performance during a high number of operations.

The breaking capacity obtained is shown in the breaking capacity charts with yellow and light blue colours.

PICK-UP VOLTAGE/RELEASE VOLTAGE-TEMPERATURE CHARTS

INSTANTANEOUS RELAYS
 AND CONTACTORS

Variability of operative voltage range against temperature for the instantaneous auxiliary relays.

INSTANTANEOUS RELAYS WITH AND WITHOUT COIL OVERVOLTAGE PROTECTION AND CONTACTORS

Operative range against ambient temperature.

Temperature (${ }^{\circ} \mathrm{C}$)

LATCHING RELAYS

The following curve shows the variability of operative voltage range against temperature for the Latching relays.

GENERAL PURPOSE LATCHING RELAYS AND LATCHING RELAYS WITH COIL OVERVOLTAGE PROTECTION

Operative range against ambient temperature.

TIME-LAG RELAYS AND IMPULSE RELAY

The following curve shows the variability of operative voltage range against temperature for the time-lag relays.

TIME-LAG RELAYS AND IMPULSE RELAY

*Operative range against ambient

 temperature.

U Upper limit of the pick-up voltage
_L Lower limit of the Pick-up voltage
Lower limit of the Drop-out voltage
Operative range of the coil voltage

Up to 125 Vdc

Temperature (${ }^{\circ} \mathrm{C}$)

arteche

MODEL SELECTION

MODEL SELECTION

Mandatory option

(*) Mandatory option

Timers (pick up time)	type	Timer time	Range	Aux. supply Vdc o Vac	
Model selection $\quad>$					FF
Contactor type					
Relay with 4 timer contacts	TDF-4DO				
Timer					
Fixed: betwetn 0 and 1000 ms *Except for 72 VDC that would be betw ms	en 0-800	F	XXXM		
Variable (with potentiometer:): $0-500 \mathrm{~ms}$ $100-600 \mathrm{~ms}$ $200-700 \mathrm{~ms}^{*}$ (limit of coil 72VDC) $300-800 \mathrm{~ms}$ $400-900 \mathrm{~ms}$ $500-1000 \mathrm{~ms}$ and intermediate combinations,	h steps up		YYYM		
Aux. supply Vdc					
Indicate voltage level (ex:24 Vdc)					

Contactors (Timers)	Type	Aux. Supply Vdc/Vac		
Model Selection $\quad>$			OP	
General purpose range				
Contactor with 2 timer contacts	CTF-2			0
Contactor with 4 timer contacts	CTF-4			0
Contactor with 2 instantaneous contacts +2 timer contacts	CTF-22			0
Contactor with 8 timer contacts	CTJ-8			0
Contactor with 4 instantaneous contacts +4 timer contacts	CTJ-44			0
Aux. Supply Vdc				
Indicate voltage level (ex:24 Vdc)				
Options				
	Dependent Standard			0
		$24 \mathrm{Vdc} \cdot \mathrm{Vac}$		1
		$48 \mathrm{Vdc} \cdot \mathrm{Vac}$		2
		$60 \mathrm{Vdc} \cdot \mathrm{Vac}$		3
Command sign and voltage	Independent Different voltages for the	$72 \mathrm{Vdc} \cdot \mathrm{Vac}$		4
	command signal and the power supply	$96 \mathrm{Vdc} \cdot \mathrm{Vac}$		5
		$110 \mathrm{Vdc} \cdot \mathrm{Vac}$		6
		$125 \mathrm{Vdc} \cdot \mathrm{Vac}$		7
		$220 \mathrm{Vdc} \cdot \mathrm{Vac}$		8

DIMENSIONS OF THE RELAYS

) Dimensions: $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$

RETAINING CLIPS

The use of retaining clips should be mandatory on rolling stocks to prevent the relay to get out of its socket by vibration.
The best choice thereof depends on the combination of relay and socket.

RETAINING CLIPS	OP SOCKET	RELATED PLUGGED RELAY
EO	Universal (D and F sized sockets require 2 units ; J sized sockets require 4 units)	RD; RF; RJ; Universal (Bag of 20 units) TDF; TDJ Universal (Bag of 100 units)
E41	DN-DE IP FF, DN-DE 2C IP FF	RD OP FF
E50	DN-TR OP, DN-TR 2C OP FF	RD OP FF
E40	FN-DE IP, FN-DE 2C IP FF	RF OP FF
E43	FN-DE IP, FN-DE 2C IP FF	TDF OP; RBF FF
E42	FN-TR OP, FN-TR 2C OP FF	RF OP FF
E44	FN-TR OP, FN-TR 2C OP FF	TDF OP; RBF FF
E31	FN-DE IP, FN-DE 2C IP FF	BF FF
E21	FN-TR OP, FN-TR 2C OP FF	BF FF
E45	JN-DE IP, JN-DE 2C IP FF	RJ OP FF
E47	JN-DE IP, JN-DE 2C IP FF	TDJ OP FF
E46	JN-TR OP, JN-TR 2C OP FF	RJ OP FF
E48	JN-TR OP, JN-TR 2C OP FF	TDJ OP FF
E29	JN-DE IP, JN-DE 2C IP FF	$B J ; ~ U J ~ F F ~$
E27	JN-TR OP, JN-TR 2C OP FF	BJ; UJ FF
	OTHER ACCESSORIES	
Security pins for RD; RF; RJ; TDF; TDJ relays (bag of 100 units)		

> EO retaining clips

>E** retaining clips

SOCKETS, DIMENSIONS AND CUT-OUT

Sockets	Type	Accessories		Clamp	weight (g)	Accessories
Relay		Screw	Double faston			
D	IP10 Front connection	DN-DE IP10 FF	DN-DE2C IP10 FF		60	Retaining clips
	IP20 Front connection	DN-DE IP20 FF	DN-DE2C IP2O FF		60	Function signs on the extraction ring
	IP20 Rear connection	DN-TR OP FF	DN-TR2C OP FF		50	
F	IP10 Front connection	FN-DE IP10 FF	FN-DE2C IP10 FF		110	Security pins (*)
	IP20 Front connection	FN-DE IP20 FF	FN-DE2C IP20 FF	F DE CL IP20 FF	110	(*) Not availble for latching relays
	IP20 Rear connection	FN-TR OP FF	FN-TR2C OP FF		90	
J	IP10 Front connection	JN-DE IP10 FF	JN-DE2C IP10 FF		225	
	IP20 Front connection	JN-DE IP20 FF	JN-DE2C IP2O FF		225	
	IP2O Rear connection	JN-TR OP FF	JN-TR2C OP FF		180	

${ }^{(1)}$ DIN rail according to EN50022 DIN46277/3
(2) Minimum distance between sockets will depend on type of relay and sockets. Please
request sockets user manual for more
detailed information.

[^0]: > ASFA systems.
 > RTMC systems.
 > RTMS systems.
 > CBTC systems.
 > ETCS systems.
 > ATO/ATP/ATS/APR... systems

[^1]: ${ }^{(2)}$ Guarantee data for relays just manufactured

[^2]: ${ }^{(2)}$ Ask for higher altitudes

